方案编号: T-1107-202506

电位滴定法测定氢氧化钙含量

一、前言

氢氧化钙(Ca(OH)₂)作为一种重要的碱性化合物,在工业、建筑、环保、农业等多个领域具有 广泛的应用。其纯度和含量直接决定了产品的性能和使用效果。,准确测定氢氧化钙的含量对于确保 产品质量、优化生产工艺、保障应用效果以及满足环保要求具有至关重要的意义。

与传统的酸碱滴定法相比,电位滴定法不受溶液颜色和浑浊度的影响,能够更准确地判断滴定终点,尤其适合于复杂样品的分析。通过电位滴定法,可以实现对氢氧化钙含量的精确测定,为工业生产提供可靠的质量保障,同时也为相关监管部门提供科学的检测手段,确保产品的合规性和安全性。

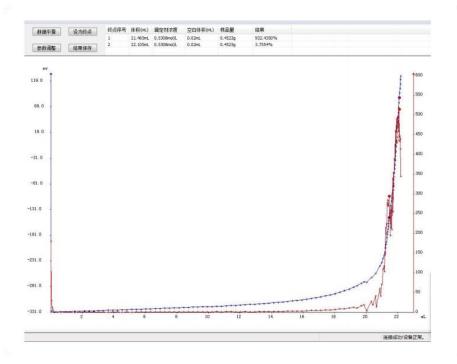
二、仪器与试剂

2.1、仪器

T960 电位滴定仪, pH 复合电极, T9616 全自动进样器

2.2、试剂

盐酸标准溶液(0.1mol/L),蔗糖。


三、实验方法

3.1、氢氧化钙含量测试

称取约 0.5g 试样,精确至 0.0002g,置于 250mL 具塞锥形瓶中,加入 50mL 无二氧化碳水,震荡使之混匀。加入 50mL 蔗糖溶液,用磁力搅拌器搅拌 15min 后,用 pH 复合电极为工作电极,用 0.5mol/L 的盐酸标准滴定液滴定至突跃点出现。

3.3、滴定图谱

3.3、仪器参数

仪器参数设置见下表:

方法名:	氢氧化钙含量测定	
	会 再化打百里侧足	
样品计量单位:	g	
参比电极:	无	
预搅拌时间:	30s	
电极平衡电位:	1mv	
滴定前平衡电位:	6mv	
结束体积:	50mL	
理论浓度:	E: 0.5	
计算公式:	(V1-V0) *C*37.05/m	
	参比电极: 预搅拌时间: 电极平衡电位: 滴定前平衡电位: 结束体积: 理论浓度:	

辅助试剂:

试剂名称:	无	浓度:	0
滴定管体积:	25mL	添加体积:	0mL
添加速度:	1	添加时间:	滴定前
参考终点:	0	延时:	15min

四、结果与讨论

4.1、实验结果

样品	样品序号	质量/g	滴定体积/mL	含量/%	平均值 /%	绝对差值
氢氧化钙	1	0.5029	25.417	94.28	94.405	<0.3%
工(十(187)	2	0.5136	26.026	94.53	, , , , , ,	

4.2、结论

使用海能 T960 全自动电位滴定仪测试工业氢氧化钙的含量,通过配备辅助模块和自动进样器,可以完全实现样品的自动化测试,其测试的数据结果重复性良好,两次测试的结果差值小于 0.3%,符合标准要求[1],满足日常测试需求。

参考文献

[1] HG/T4120-2024 工业氢氧化钙.[s]