

方案编号: K-570-202506

凯氏定氮法测定电解液中的氮含量

一、前言

电解液在锂离子电池等能源储存系统中起着至关重要的作用,其成分的纯度和稳定性直接影响电池的性能和寿命。氮元素的存在可能来源于多种途径,如电解液原材料中的杂质、生产过程中的污染,或某些含氮添加剂的使用。因此,测试电解液中的氮含量对于保证电池的性能和安全性具有重要意义。

首先,氮含量的测定有助于评估电解液的纯度。过量的氮可能表明电解液受到外部污染,或在生产过程中引入了不必要的杂质。这些杂质可能影响电解液的导电性、化学稳定性,甚至导致电池内部副反应的发生,从而影响电池的循环寿命和安全性。

其次,部分电解液添加剂(如含氮化合物)可能在高温或充放电过程中分解,生成氨、胺类或其他含氮副产物,这些副产物可能与电极材料发生反应,导致电池性能下降。因此,通过检测电解液中的氮含量,可以优化添加剂的使用,提高电解液的长期稳定性。

综上所述,测试电解液中的氮含量对于确保电池材料的质量、优化电解液配方以及提升电池整体性能和安全性都具有重要价值,是电解液质量控制和研发过程中不可忽视的关键步骤。

本方案采用凯氏定氮法测定电解液中的总氮和氨氮含量。

二、仪器与试剂

2.1、仪器

K1160 全自动凯氏定氮仪, SH420F 石墨消解仪, 分析天平等

2.2、试剂

硫酸(分析纯),20g/L 硼酸溶液,溴甲酚绿-甲基红混合指示剂,400g/L 氢氧化钠溶液,混合催化剂(硫酸铜 0.2g+硫酸钾 3g),0.1mo1/L 硫酸标准滴定液(以氢离子浓度计)。

三、实验方法

3.1、样品制备

用注射器,采用减量法准确称取样品 1g~2g 左右 (精确至 0.1mg),然后转移至消化管中。

3.2、消解

测试总氮含量的样品需要进行消解。向消化管中加入混合催化剂、10mL浓硫酸,按照下表设置消解程

序:

温度梯度/°C	保温时间/min
220	30
300	10
420	60

3.3、测试

消解完成, 待总氮测试样品冷却并不再冒酸雾后, 与氨氮测试样品一同上机测试, 定氮仪参数设置参见下表:

测试类型	蒸馏时间	蒸汽流量	碱液	滴定酸浓度浓度	硼酸	稀释水	蛋白系数
总氮	5min	100%	40mL	0.01041 (H ⁺) mo1/L	20mL	40mL	_
氨氮	Omin		20mL	, <i>, ,</i> -	••••		

仪器自动进行蒸馏、滴定、结果计算。

四、结果与讨论

经过消解、蒸馏、滴定,三种电解液样品的总氮测试结果如下表:

样品	称样量/g	空白体积/mL	滴定体积/mL	总氮含量/ppm	均值/ppm	绝对相差/ppm
电解液 1	1. 4172		0.3808	3. 291	3.352	0.12
	1. 4009	0. 3488	0. 3816	3. 412		
电解液 2	1. 4048		0. 4375	9. 202	9.025	0.35
	1. 4002		0. 4338	8. 847		
电解液 3	1. 4261		0. 4220	7. 481	7.418	0. 12
	1. 4126		0. 4201	7. 356		

氨氮测试结果如下表:

样品	称样量/g	空白体积/mL	滴定体积/mL	氨氮含量/ppm	均值/ppm	绝对相差/ppm
电解液 1	1. 4638		0. 3527	1. 374	1.521	0. 29
	1. 4424	0. 3389	0.3554	1.667		
电解液 2	1. 4357		0.3626	2. 406	2. 224	0.36
	1. 4126		0. 3587	2.043		
电解液 3	1. 4205		0. 3488	1.016	1.169	0.31
	1. 4110		0. 3517	1.322		

结果显示,电解液 1、2、3 的总氮含量分别为 3.552ppm、9.025ppm、7.418ppm; 氨氮含量分别为 1.521ppm、2.224ppm、1.169ppm,精密度均较好。

五、参考

无